Generalized polar coordinates on Lie groups and numerical integrators
نویسندگان
چکیده
Motivated by recent developments in numerical Lie group integrators, we introduce a family of local coordinates on Lie groups denoted generalized polar coordinates. Fast algorithms are derived for the computation of the coordinate maps, their tangent maps and the inverse tangent maps. In particular we discuss algorithms for all the classical matrix Lie groups and optimal complexity integrators for nspheres.
منابع مشابه
Lie Group Spectral Variational Integrators
Abstract. We present a new class of high-order variational integrators on Lie groups. We show that these integrators are symplectic, momentum preserving, and can be constructed to be of arbitrarily high-order, or can be made to converge geometrically. Furthermore, these methods are stable and accurate for very large time steps. We demonstrate the construction of one such variational integrator ...
متن کاملOn the construction of geometric integrators in the RKMK class
We consider the construction of geometric integrators in the class of RKMK methods. Any di erential equation in the form of an in nitesimal generator on a homogeneous space is shown to be locally equivalent to a di erential equation on the Lie algebra corresponding to the Lie group acting on the homogenous space. This way we obtain a distinction between the coordinate-free phrasing of the di er...
متن کامل. N A ] 1 8 A ug 2 00 5 GENERALIZED GALERKIN VARIATIONAL INTEGRATORS
Abstract. We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuratio...
متن کاملGeneralized Galerkin Variational Integrators
We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuration bundle a...
متن کاملHamilton-Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties
In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge– Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 114 شماره
صفحات -
تاریخ انتشار 2009